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Abstract
We present a systematic discussion of supersymmetric solutions of 2D dilaton
supergravity. In particular those solutions which retain at least half of the
supersymmetries are ground states with respect to the bosonic Casimir
function (essentially the ADM mass). Nevertheless, by tuning the prepotential
appropriately, black-hole solutions may emerge with an arbitrary number
of Killing horizons. The absence of dilatino and gravitino hair is proved.
Moreover, the impossibility of supersymmetric dS ground states and of
nonextremal black holes is confirmed, even in the presence of a dilaton. In
these derivations, knowledge of the general analytic solution of 2D dilaton
supergravity plays an important role. The latter result is addressed in the more
general context of gPSMs which have no supergravity interpretation.

Finally it is demonstrated that the inclusion of non-minimally coupled
matter, a step which is already nontrivial by itself, does not change these
features in an essential way.

PACS numbers: 04.65.+e, 04.60.Kz, 04.70.−s

1. Introduction

In the mid-1990s, during and after the ‘second string revolution’, BPS (Bogomolnyi–Prasad–
Sommerfield [1]) black holes (BHs) [2, 3] have attracted much interest because in particular
they allow us to derive the BH entropy by counting D-brane microstates exploiting string
dualities (for reviews cf e.g. [4]). We define a BPS BH as a supergravity (SUGRA) solution
respecting half of the supersymmetries and exhibiting at least one Killing horizon in the
bosonic line element.

A key reference for the properties of supersymmetric solutions in 2D dilaton SUGRA is
the work of Park and Strominger [5]. As shown by these authors for the SUGRA version
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of the CGHS model [6], as well as for a SUGRA extended generalized 2D dilaton theory, a
certain vacuum solution can be defined with vanishing fermions. A specific solution, which
still retained one supersymmetry, was constructed for the CGHS-related model. In the generic
case the existence of such a solution was proved, but it was not constructed.

Until quite recently a systematic study of all supersymmetric solutions in 2D dilaton
SUGRA theories has not been possible. Recently two of the present authors have shown
[7, 8] that the superfield formulation of [5] can be identified with the one of a certain subclass
of graded Poisson–Sigma models (gPSMs). General gPSMs are fermionic extensions of
bosonic PSMs which, in the present case, are taken to be 2D dilaton theories of gravity [9].
This subclass of gPSMs has been dubbed minimal field SUGRA (MFS) in [8]. The important
consequence of this equivalence is that the known analytic solution in the MFS formulation [8]
represents the full solution for dilaton SUGRA [5], including all solutions with nonvanishing
fermionic field components.

This permits us to attack in a systematic manner the problem of 2D SUGRA solutions
which retain at least one supersymmetry, the main goal of our present work. It turns out
that, although some information can be obtained from the symmetry relations, knowledge of
the full solution is a necessary input. This is of particular importance regarding the eventual
existence of fermionic hair for BHs1.

In doing this we are also able to incorporate SUGRA invariant matter, where a special
previous model [11] is extended to generalized dilaton theories and also transcribed into the
more convenient MFS formulation. Although no general analytic solution is possible when
matter is included, we show that there are no nonextremal BH solutions of 2D SUGRA
respecting half of the supersymmetries. This result is not unexpected: ‘pure’ SUGRA—i.e.
not deformed by a (super-) dilaton field—does not permit nonextremal supersymmetric BH
solutions according to a simple but elegant argument2 due to Gibbons [2]. Actually, in 2D
dilaton SUGRA a more direct proof is possible, which avoids the continuation to Euclidean
signature: first, we show that the body of the Casimir function (a quantity in gPSM theories
related to the energy of the system) has to vanish and then we prove that these ground-state
solutions cannot provide simple zeros of the Killing norm. En passant all solutions respecting
at least half of the supersymmetries are classified including those of [5].

The paper is organized as follows: after a short review of MFS models (section 2), all
ground states with unbroken supersymmetry are discussed in section 3, which turn out to be
constant dilaton vacua. Such vacua appear nontrivially in some, but not all dilaton theories.
Section 4 is devoted to a classification of solutions respecting half of the supersymmetries.
All of them imply a vanishing body for the bosonic Casimir function. In section 5, it is
demonstrated that for such ground states the Killing norm has to be positively semi-definite
and thus only extremal horizons may exist. This statement even can be extended to general
gPSM theories. Section 6 discusses the coupling of MFS to matter degrees of freedom and
section 7 generalizes the result of section 5 to the one including matter.

The notation is explained in appendix A. Equations of motion and some aspects of the
exact solution are contained in appendix B. The subject of appendix C is some key formulae
[8] relating MFS to the superfield formulation of 2D dilaton SUGRA [5], which are needed
for the construction of the matter couplings.

1 An early attempt to prove the validity of this no-hair conjecture for the CGHS model can be found in [10].
2 A crucial ingredient is the continuation to the Euclidean domain and the observation that the absence of
conical singularities enforces boundary conditions of thermal quantum field theory, which are not compatible with
supersymmetry [12] implying T = 0 and hence extremality.
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2. Minimal field SUGRA (MFS)

General 2D dilaton SUGRA can be formulated in terms of a gPSM [9, 13]. Its action with
target space variables XI , gauge fields AI and Poisson tensor P IJ

SgPSM =
∫

M

dXI ∧ AI +
1

2
P IJ AJ ∧ AI (2.1)

is invariant under the symmetry transformations

δXI = P IJ εJ δAI = −dεI − (∂IP
JK)εKAJ (2.2)

as a consequence of the graded nonlinear Jacobi identity

P IL∂LP JK + g-perm (IJK) = 0. (2.3)

Not every gPSM may be used to describe 2D SUGRA. A subclass of appropriate models
(called minimal field SUGRA, MFS) has been identified in [7, 8] for N = (1, 1) SUGRA.
It contains a dilatino χα and a gravitino ψα , both of which are Majorana spinors (XI =
(φ,Xa, χα), AI = (ω, ea, ψα), Y = X++X−−):

P aφ = Xbεb
a P αφ = −1

2
χβγ∗β

α (2.4)

P ab =
(

V + YZ − 1

2
χ2

(
V Z + V ′

2u
+

2V 2

u3

))
εab (2.5)

P αb = Z

4
Xa(χγaγ

bγ∗)
α

+
iV

u
(χγ b)α (2.6)

P αβ = −2iXcγ αβ
c +

(
u +

Z

8
χ2

)
γ∗αβ (2.7)

V,Z and the prepotential u are functions of the dilaton field φ and obey the relation

V = − 1
8 [(u2)′ + u2Z]. (2.8)

This Poisson tensor leads to the action

SMFS =
∫
M

(
φ dω + XaDea + χαDψα + ε

(
V + YZ − 1

2
χ2

(
V Z + V ′

2u
+

2V 2

u3

))

+
Z

4
Xa(χγaγ

bebγ∗ψ) +
iV

u
(χγ aeaψ)

+ iXa(ψγaψ) − 1

2

(
u +

Z

8
χ2

)
(ψγ∗ψ)

)
. (2.9)

An important class of simplified models is described by the special choice, Z̄ = 0. Following
the nomenclature of [8] it is called MFS0 and barred variables are used. As can be verified
easily the action (2.9) and SMFS0 are related by a conformal transformation of the fields
(Q′(φ) = Z(φ))

φ = φ̄ Xa = e− 1
2 Q(φ)X̄a χα = e− 1

4 Q(φ)χ̄α (2.10)

ω = ω̄ +
Z

2

(
X̄bēb +

1

2
χ̄βψ̄β

)
ea = e

1
2 Q(φ)ēa ψα = e

1
4 Q(φ)ψ̄α. (2.11)

The symmetry transformations (2.2) for fermionic ε with (2.4)–(2.7) become
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δφ = 1

2
(χγ∗ε) (2.12)

δXa = −Z

4
Xb(χγbγ

aγ∗ε) − iV

u
(χγ aε) (2.13)

δχα = 2iXc(εγc)
α −

(
u +

Z

8
χ2

)
(εγ∗)α (2.14)

δω = Z′

4
Xb(χγbγ

aγ∗ε)ea + i

(
V

u

)′
(χγ aε)ea +

(
u′ +

Z′

8
χ2

)
(εγ∗ψ) (2.15)

δea = Z

4
(χγaγ

bγ∗ε)eb − 2i(εγaψ) (2.16)

δψα = −(Dε)α +
Z

4
Xa(γaγ

bγ∗ε)αeb +
iV

u
(γ bε)αeb +

Z

4
χα(εγ∗ψ). (2.17)

By eliminating Xa and the torsion-dependent part of the spin connection a new action (MFDS)
in terms of dilaton, dilatino, zweibein and gravitino is obtained3

SMFDS =
∫

d2xe

(
1

2
R̃φ + (χσ̃ ) + V − 1

4u
χ2

(
V Z + V ′ + 4

V 2

u2

)

− 1

2
Z

(
∂mφ∂mφ +

1

2
(χγ∗ψm)∂mφ +

1

2
εmn∂nφ(χψm)

)

− iV

u
εmn(χγnψm) +

u

2
εmn(ψnγ∗ψm)

)
. (2.18)

Its supersymmetry transformations read

δφ = 1

2
(χγ∗ε) (2.19)

δχα = −2iεmn

(
∂nφ +

1

2
(χγ∗ψn)

)
(εγm)α −

(
u +

Z

8
χ2

)
(εγ∗)α (2.20)

δem
a = Z

4
(χγ aγ bγ∗ε)emb − 2i(εγ aψm) (2.21)

δψmα = −(D̃ε)α +
iV

u
(γmε)α +

Z

4

(
∂nφ(γmγnε)α +

1

2
(ψmγ nχ)(γnγ∗ε)α

)
. (2.22)

The action (2.18) has been shown to be equivalent [8] to the general dilaton superfield SUGRA
of Park and Strominger [5] (cf appendix C).

3. Both supersymmetries unbroken

From the MFS supersymmetry transformations in section 2 one can read off different
conditions for solutions respecting full supersymmetry. From (2.12) and (2.16) follows4

χ+ = χ− = ψ+ = ψ− = 0. The two terms in (2.14) are linearly independent and thus
X++ = X−− = u = 0 as well. In addition (2.17) implies that the transformation parameters

3 Quantities with a tilde refer to the dependent spin connection ω̃a = εmn∂nema − iεmn(ψnγaψm), i.e. σ̃α = ∗(D̃ψ)α
and R̃ = 2 ∗ dω̃. The quantity σ̃ − α is the fermionic partner of the curvature scalar R̃.
4 Conventions and light-cone coordinates are summarized in appendix A.
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must be covariantly constant: (Dε)α = 0. For a solution where both supersymmetries are
unbroken the Poisson tensor (2.4)–(2.7) vanishes identically.

The equations of motion imply that the dilaton φ has to be a constant. It is restricted
to a solution of the equation u = 0. Such constant dilaton vacua (CDV) are, for instance,
encountered [14] in the ‘kink’ solution of the dimensionally reduced gravitational Chern-
Simons term [15].

We recall in appendix B that a key ingredient of the solution is the conserved Casimir
function. At this point its additive ambiguity can be fixed: supersymmetry covariance requires
that solutions respecting both supersymmetries have vanishing Casimir function. This means
that eventual additive constants in (B.10), (B.11) are absent.

Positivity of energy would imply u2 � 8Y because the Casimir function CB is related to
the negative ADM mass (cf section 5 of [16]). If this inequality is saturated the ground state
is obtained. Equation (B.10) in particular implies that all CDV solutions with u = 0 have
vanishing body of the Casimir function5.

As an illustration we consider a two-parameter family of models (the so-called ‘ab-
family’) encompassing most of the relevant ones [17]. Among other solutions, BHs immersed
in Minkowski, Rindler or (A)dS space can be described. This family is defined by (2.9) with

Z(φ) = − a

φ
u(φ) = cφα α, a, c ∈ R. (3.1)

Supersymmetry restricts the constant B = c2(b + 1)/4 in the potential (2.8)

V (φ) = −B

2
φa+b α = a + b + 1

2
(3.2)

to B > 0 if b > −1 and to B < 0 if b < −1. The curvature scalar of the ground state
geometry is given by

R = bc2

2
(α − a)X2(α−1). (3.3)

The Minkowski ground state (MGS) condition6 reads α = a, Rindler space follows for b = 0
and (A)dS means α = 1. In the latter case supersymmetry restricts the curvature scalar
R = c2(1 − a)2/2 to positive values, which in our notation implies AdS.

For fully supersymmetric solutions of the ab-family the only possible values for the
dilaton are φ = 0 or |φ| = ∞ (depending on the value of α), unless c = 0, in which case the
prepotential u vanishes identically.

4. One supersymmetry unbroken

4.1. Casimir function CB = 0

The symmetry transformation δφ = 0 of the dilaton from (2.12) implies

χ+ε+ = χ−ε−. (4.1)

The vanishing of (2.14) and (2.16) leads to

uε− = −2
√

2X++ε+ uε+ = −2
√

2X−−ε− (4.2)

5 CDV solutions with u �= 0 must obey u′/u = − 1
2 Z, which leads to CS = 0 while CB �= 0. Clearly, they cannot

respect both supersymmetries.
6 It means simply that for vanishing bosonic Casimir function the bosonic line element is diffeomorphic to the one
of Minkowski space.
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εγaψ = −i
Z

8
εa

beb(χε). (4.3)

In (4.2) terms proportional to χ2ε have to vanish as a consequence of (4.1). Equations (4.2)
require

Y = 1
8u2 (4.4)

which in turn implies that the body of the Casimir function (B.10) vanishes. In this sense,
BPS-like states are always ground states. Note that equation (4.4) remains valid in the case
u = 0, implying that at least one component of Xa vanishes as well and vice versa.

It is worthwhile emphasizing that (4.4) corresponds to a vanishing determinant

 = det

(
−2

√
2X++ −u

−u −2
√

2X−−

)
(4.5)

of the bosonic part of (2.7) (cf [9]).  = 0 must hold for any solution that respects at least
one supersymmetry.

4.2. Classification of solutions

4.2.1. Vanishing fermions. We first consider the case of vanishing dilatino χα and gravitino
ψα . Then all three quantities u,Xa have to be nonvanishing or otherwise the solution with full
supersymmetry of section 3 is recovered. With the conditions (4.2) and hence also (4.4) the
variations (2.12)–(2.16) vanish, while (2.17) equal zero represents two differential equations
for ε+, resp. ε−. By inserting the explicit solution (section 6 of [8]) it can be checked that
both are identical. A straightforward calculation, without using any further restrictions on the
different variables involved, yields

dε+ +

(
dX++

2X++
−

(
u′

u
+

1

2
Z

)
dφ

)
ε+ = 0 (4.6)

possessing the general solution (Q is defined in (B.12))

ε+ = e
1
2 Q u√

X++
ε̃. (4.7)

Here ε̃ is a spinorial integration constant. ε− is obtained via (4.2). Thus, all solutions
without fermion fields, exhibiting one supersymmetry, leave a linear combination of the two
supersymmetries unbroken, in agreement with the discussion in [5].

There exists one special case of (4.6) where an even simpler solution exists: if Z = 0
(MFS0 in the parlance of [8]) and if in addition u is a constant, the differential equation (4.6)
simply says that the symmetry parameter is covariantly constant. This model is generalized
teleparallel dilaton gravity. As u is simply a cosmological constant, it drops out in the constraint
algebra, and therefore this case has been referred to as rigid supersymmetry in [9].

4.2.2. Nonvanishing fermions and no-hair theorem. Further supersymmetric solutions are
possible for nonvanishing fermions, a situation not considered in [5], but relevant for the
question of fermionic hair7.

Assuming that at least one component of χα is different from zero, e.g. χ+ �= 0,
equation (4.1) can have the chiral solution ε+ = χ− = 0, while ε− �= 0 provides the
remaining supersymmetry, or it can relate ε+ to ε− by means of χ+ �= 0 and χ− �= 0.

7 No-hair theorems are a recurrent theme in BH physics ([18] and references therein).
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Solutions of the first type are almost trivial, because they require u = X−− = 0. Since
the dilaton must not be constant (or else the CDV case would be recovered) this implies that
u must vanish identically, and not just at a certain value of φ. All fermions must be of one
chirality, in particular ε+ = χ− = ψ− = 0. The quantities X++, e++, ω, χ+ must be covariantly
constant and may contain soul contributions. The dilaton has to fulfil the linear dilaton vacuum
condition dφ = const. Only e−− and ε− are slightly nontrivial and can be deduced from

(De)−− = Zµe−− (Dε)− = Z

2
µε− µ =

(
X++e++ +

1

2
χ+ψ+

)
. (4.8)

The bosonic line element is flat and obviously the Casimir function is identically zero.
For the remaining class of solutions with both components of χ and of ε different from

zero the body of the Casimir function still vanishes, but the soul can be nonvanishing as from
(2.13) and (B.11):

Z = −u′

u
CS = 1

32
eQu′χ2. (4.9)

This is equivalent to the MGS condition mentioned in section 3 below (3.3). Thus, only MGS
models are allowed and since the solution has to be the ground state, the bosonic part of the
geometry is trivially Minkowski space.

Therefore, a solution with nonvanishing fermions must have a trivial bosonic background
(this feature is true also for the first type). Consequently there exist no BPS BHs with fermionic
hair.

There remains a technical subtlety about the nonchiral solutions. As both components
of ε are non-zero, (4.2) implies that all interesting cases have u,X++ and X−− different from
zero. Actually, the solutions presented in [8] do not cover this case, because the one for
C �= 0 ((6.9)–(6.13) of [8]), depending on C−1, cannot be used in the present case, as the
inverse of a pure soul is ill-defined. The solution for C = 0 ((6.17)–(6.21) of [8]) depends
on an arbitrary fermionic gauge potential Ã = −df , which is the gauge potential associated
with the additional fermionic Casimir function (equation (6.15) of [8]) appearing in that case.
Analysing the equations of motion (e.o.m.-s) (appendix B and cf also [9]) for CB = 0 but
CS �= 0, this fermionic Casimir function no longer appears, but the solution remains valid if
the gauge potential Ã = −df obeys the constraint χ2Ã = 0.

Finally (2.17) again leads to the differential equation

Dε+ −
(

Z

16

u2

X++
e−− − Z

2
X++e++

)
ε+ = 0. (4.10)

Inserting the solution described above all trilinear and higher spinorial terms are found to
vanish. Thus, the solution of (4.10) reduces to (4.7).

5. No nonextremal BPS black holes

5.1. MFS models

It has been shown in section 4 that the body of the bosonic Casimir function has to vanish
for all solutions respecting at least half of the supersymmetries. We will focus first on BPS
solutions where either X++ �= 0 or X−− �= 0 (or both).

In the bosonic case ground-state solutions C = 0 imply for the line element (cf e.g.
equations (3.26), (3.27) of [16], ⊗ denotes the symmetrized tensor product)

(ds)2 = 2dF ⊗ (dr − eQ(φ)w(φ) dF) dr = eQ(φ) dφ. (5.1)
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Obviously, there always exists a Killing vector ξµ∂µ = ∂F the norm of which is given by
K = −2eQ(φ)w(φ). By choosing the function w(φ) appropriately, nonextremal Killing
horizons are possible, e.g. for Q = 0,−2w = 1 − 2m/φ a Schwarzschild-like BH emerges.

In SUGRA, however, (B.12) implies a negative (semi-)definite w and hence the Killing
norm K can only have zeros of even degree:

K(φ) = −2eQ(φ)w(φ) = (
1
2u(φ) eQ(φ)

)2 � 0. (5.2)

Thus, if a Killing horizon exists it has to be an extremal one, which confirms the general
proof using thermal field theory arguments [2]. For instance, with u = 2(

√
φ − M),Z(φ) =

−1/(2φ) the line element reads (ds)2 = 2dF ⊗ (dr + (1 − M/r)2dF), which is the two-
dimensional part of an extremal Reissner–Nordström BH8.

One can trivially generalize this result to all ground-state solutions which are not CDV,
i.e. non-supersymmetric solutions of 2D dilaton SUGRA with vanishing body of the Casimir
function and non-constant dilaton, because the key inequality (5.2) still holds.

Finally, the simpler CDV case X++ = 0 = X−− shall be addressed. As shown in the
previous two sections CDV implies that both supersymmetries are either broken or unbroken.
The equations of motion imply a vanishing body of torsion and a constant body of curvature.
Thus—as in the bosonic case (cf section 2.1 in [14])—only (A)dS, Rindler9 or Minkowski
spaces are possible. However, supersymmetry provides again an obstruction: curvature is
proportional to (u′)2 and thus again the dS case, together with the possibility of nonextremal
Killing horizons, is ruled out by supersymmetry.10

5.2. Generic gPSM gravity

The question of nonextremal BPS BHs may be addressed in a more general context, namely
for gPSM gravity that does not belong to the MFS class. Here we consider generic Poisson
tensors with local Lorentz invariance implemented as in equation (2.4). In addition the
fermionic extension P αβ must have full rank almost everywhere in the space of solutions with
the notable exception of those which still obey equation (4.1) and where consequently the
determinant  (analogous to (4.5)) vanishes. These solutions will be called BPS because they
still respect half of the fermionic symmetries.

In a generic gPSM (2.7) is replaced by P αβ = vαβ + χ−χ+v
αβ

2 with

vαβ =
(√

2X++(ũ − û) −u

−u
√

2X−−(ũ + û)

)
(5.3)

where u, ũ and û are functions of φ and Y [9]. v
αβ

2 is determined by the Jacobi identity (2.3).
Also in the bosonic potential

P ab = εab(v(φ, Y ) + χ−χ+v2(φ, Y )) (5.4)

8 In dilaton (super)gravity the number and types of horizons can be adjusted by selecting a certain behaviour of
the functions w and (to a lesser extent) Q, which enter the Killing norm (5.2). In many cases of physical relevance
extremality is induced by tuning of certain charges/constants of motion, but we emphasize that the explicit presence
of additional (gauge) fields by no means is necessary for extremality. For instance, the Reissner–Nordström BH can
be constructed either from spherically reduced Einstein–Maxwell theory by tuning the two Casimir functions (mass
and charge) accordingly, but it is also possible to provide an effective description where one of these constants, the
charge, enters as a parameter of the action rather than a constant of motion.
9 If curvature is nonvanishing the Rindler term can always be absorbed by a linear redefinition of the coordinates
r → r ′ = αr + β, F → F ′ = F/α, α �= 0. For vanishing curvature the Minkowski term can always be absorbed by
a similar redefinition.
10 In fact, there is one very trivial possibility that remains for a CDV solution with vanishing curvature which allows
for the existence of exactly one nonextremal Killing horizon: the line element (ds)2 = 2 dF ⊗ (dr + br dF), b �= 0
contains a nonextremal (Rindler) horizon at r = 0. However, this is neither a BPS state nor a true BH solution.
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the body is an independent function, while v2 again follows from the Jacobi identity. Vanishing
determinant of (5.3) implies

Y = u2

2(ũ2 − û2)
. (5.5)

On the other hand, the Killing norm is proportional to Y (cf equation (36) in [19]) and thus
nonextremal horizons are possible if ũ and û are both non-zero and field-dependent11 (e.g.
u = a + bφ, ũ + û = a + bφ, ũ − û = c; a, b, c ∈ R). However, following the arguments of
[2] all BPS BHs should be extremal in generalized gPSM gravity theories as well12.

This apparent contradiction is resolved by investigating singularity obstructions on the
Poisson tensor (cf section 3 in [9] and [7]). Solving the Jacobi identity (2.3) with u, ũ, û

and v as a given input, all remaining functions P aβ, v2 in (5.4) and v
αβ

2 are proportional to
−1. Only for very special relations among the four free functions can the inverse powers
of  be removed. It turns out that these relations imply extremality of eventual horizons
appearing in BPS solutions. Consequently, ‘BPS states’ of generalized gPSM gravity theories
with nonextremal horizons are singular solutions of the equations of motion13.

6. Extension with conformal matter

We will prove in the following section that the conclusions of section 5.1 do not change
when conformal matter is coupled to the dilaton SUGRA system. As these conclusions rely
on the details of the symmetry transformations and the conserved quantities, in a first step
the extension to MFS with matter fields is introduced in this section. To this end the close
relation between MFS and the models obtained from superspace [8] is used. In superspace
non-minimally coupled conformal matter is described by the Lagrangian

S(m) = 1

4

∫
d2x d2θEP (�)DαMDαM. (6.1)

Here P(�) is a function of the dilaton superfield � (cf (C.5)) and for the θ -expansion of the
matter multiplet M we write14

M = f − iθλ + 1
2θ2H. (6.2)

Integrating out superspace one arrives at (cf appendix C)

S(m) =
∫

d2x e

[
P(φ)

(
1

2
(∂mf ∂mf + iλγ m∂mλ + H 2)

+ i(ψnγ
mγ nλ)∂mf +

1

4
(ψnγmγnψ

m)λ2

)

+
1

4
P ′(φ)(i(λγ∗χ)H − (χγ∗γ mλ)∂mf − Fλ2) − 1

32
P ′′(φ)χ2λ2

]
. (6.3)

11 These states in general are not ground states in the sense of section 3.
12 The constraints from gPSM symmetries are first class and free of ordering problems [7, 20, 21]. Therefore, on
the constraint surface the unbroken fermionic symmetry still commutes with the Hamiltonian, which is the central
ingredient in the argument by Gibbons.
13 Similar states with singularities in the gravitino sector at the horizon had been found in 4D supergravity as well,
cf the discussion in [2].
14 Whenever the distinction between superfield components and MFS fields is important, underlined symbols are used
for the former ones. However, for simplicity this is omitted in most formulae of this section, as the matter action is
invariant under the redefinition (C.18), while all other identifications are trivial.
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The action (6.3) depends on the auxiliary fields H from the matter multiplet and F from the
dilaton multiplet. H can be integrated out without detailed knowledge of the geometric part
of the action. To integrate out F, however, u(�) and Z(�) in (C.1) must be specified15.

6.1. Matter extension at Z̄ = 0

A particularly simple situation is realized by choosing Z̄ = 0 (following the notation of
[8], barred variables are used for this special case throughout). Then the action (C.1)
is bilinear in Ā and F̄ and the elimination condition (C.12) is modified according to
Ā = −ū′/2 + P̄ ′λ̄2/4, F̄ = −ū/2. The part of the action independent of the matter field
retains the form (C.13) with Z̄ = 0, while (6.3) after elimination of all auxiliary fields
becomes

S̄(m) =
∫

d2x ē

[
P̄

(
1

2
(∂mf̄ ∂mf̄ + iλ̄γ m∂mλ̄) + i(ψ̄nγ

mγ nλ̄)∂mf̄ +
1

4
(ψ̄nγmγnψ̄

m)λ̄2

)

+
ū

8
P̄ ′λ̄2 − 1

4
P̄ ′(χ̄γ∗γ mλ̄)∂mf̄ − 1

32

(
P̄ ′′ − 1

2

[P̄ ′]2

P̄

)
χ̄2λ̄2

]
. (6.4)

The symmetry transformations of the matter fields f̄ and λ̄α after elimination of H̄ read (it
should be noted [8] that the symmetry parameters ε and ε are different in general)

δ̄f̄ = i(ε̄λ̄) δ̄λ̄α = (∂mf̄ + i(ψ̄mλ̄))(γ mε)α − 1

4

P ′

P
(λ̄γ∗χ̄)ε̄α (6.5)

while the zweibein, the dilaton and the dilatino still transform according to (C.14), (C.16) and
(C.17), resp. The transformation rule for the gravitino changes, as it depends on the auxiliary
field Ā:

δψ̄
m

α = −( ˜̄Dε̄)α +
i

4

(
ū′ − 1

2
P̄ ′λ̄2

)
(ε̄γm)α. (6.6)

When working with the MFS formulation of the geometric part, it is advantageous to
formulate the matter action (6.4) in terms of differential forms as well:

S(m) =
∫

M

[
P̄

(
1

2
df̄ ∧ ∗ df̄ +

i

2
λ̄γaē

a ∧ ∗ dλ̄ + i ∗ (ēa ∧ ∗ df̄ )ēb ∧ ∗ψ̄γ aγ bλ̄

+
1

4
∗ (ēb ∧ ∗ψ̄)γ aγ bēa ∧ ∗ψ̄λ̄2

)
+

ū

8
P̄ ′λ̄2ε̄

− 1

4
P̄ ′(χ̄γ∗γ aλ̄)ēa ∧ ∗ df̄ − 1

32

(
P̄ ′′ − 1

2

[P̄ ′]2

P̄

)
χ̄2λ̄2ε̄

]
. (6.7)

For the special case Z̄ = 0 discussed so far, the identification (C.18) between the variables
of MFS and of the superfield formulation (C.1) in [5] becomes trivial. Thus, replacing ε̄ in
(6.5) and (6.6) by ε̄, the action (2.18) with Z̄ = 0 together with (6.4) is invariant under
(2.19)–(2.21), (6.5) and (6.6). The special case of minimal coupling (P (φ̄) = 1) of this
matter extension of a gPSM-based dilaton SUGRA model has already been obtained in [11]
using Noether techniques. But the above derivation using the equivalence of this theory to
a superspace formulation has definite advantages as it straightforwardly generalizes to more
complicated matter actions.

As a first step we should derive from the result obtained so far the matter extension of MFS0

(MFS0 indicates MFS for Z̄ = 0). This step is necessary as only the first-order formalism

15 As F appears in a term ∝ P ′ the restriction to Z̄ = 0 in the following is not necessary when considering minimally
coupled matter.
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in terms of a gPSM allows the straightforward treatment of the model at the classical as well
as at the quantum level. Also in the present context the MFS formulation is much superior.
The MFS action is different from (2.18), which was obtained after elimination of Xa and (the
torsion-dependent part of) ω. Now these auxiliary variables must be re-introduced together
with the matter coupling. Second, we would like to extend the matter coupling to the most
general MFS (2.9). So far, we arrived at a matter extension for the special case Z̄ = 0 only.
The general matter coupling (Z �= 0) will be obtained by the use of a certain dilaton-dependent
conformal transformation (cf [8, 9]). It is argued in the end that the same result could also
have been derived in a different way.

The discussion of a consistent matter extension of MFS0 considerably simplifies by
observing that the action (6.4) or (6.7) does not change when the independent variables X̄a

and ω̄ are re-introduced. This is trivial for ω̄, as (6.4) does not contain the dependent spin
connection ˜̄ω. The independence of X̄a is obvious as well [8, 9]: the elimination condition of
X̄a depends on derivatives acting on the dilaton field and the matter action does not contain
such terms. Thus the matter extension of MFS0 must be of the form16

S̄tot(X̄, Ā, f̄ , λ̄) = SMFS0(X̄, Ā) + S̄(m)(ēa, ψ̄α, φ̄, f̄ , λ̄). (6.8)

Not completely trivial is the derivation of the correct supersymmetry transformations.
However, it is important to realize that (6.8) already is invariant up to equations of motion17 of
X̄a and ω̄: as these e.o.m.-s are linear in X̄a and ω̄, the elimination of these fields ‘commutes’
with the symmetry transformation. Therefore there exists a simple and systematic way to
modify the MFS0 symmetry laws (2.12)–(2.17) such that (6.8) together with (6.5) is again
invariant. In an abstract notation the behaviour of (6.8) under (2.12)–(2.17) and (6.5) may be
written as

δ̄S̄tot(X̄, Ā, f̄ , λ̄) = Na
X(X̄, Ā, f̄ , λ̄; ε̄) · (X̄a-e.o.m.) + (ω̄-e.o.m.) ∧ Nω(X̄, Ā, f̄ , λ̄; ε̄).

(6.9)

Of course, the two field-dependent quantities Na
X and Nω multiplying the e.o.m.-s must vanish

in the absence of matter fields:

Na
X(X̄, Ā, f̄ = 0, λ̄ = 0; ε̄) = 0 Nω(X̄, Ā, f̄ = 0, λ̄ = 0; ε̄) = 0. (6.10)

They are used to modify the symmetry transformations of X̄a and ω̄ by

δ̄X̄a = δ̄MFS0X̄
a − Na

X δ̄ω̄ = δ̄MFS0 ω̄ − Nω (6.11)

where the transformations (2.12)–(2.17) with Z̄ = 0 have been renamed δ̄MFS0 .
The explicit calculation of Na

X and Nω is straightforward. As S̄(m) depends on the
MFS0 fields φ̄, ēa and ψ̄α only, the variations (2.12), (2.16) and (2.17) within (6.4) lead
to potential non-invariance. But (2.12) and (2.16) are equivalent to the supersymmetry
transformations of these fields within the superfield formulation (cf (C.6), (C.9)). There
remains the supersymmetry transformation of the gravitino. Again, most terms are equivalent
to the superspace formulation (remember that Z̄ = 0!), except for the covariant derivative
(Dε)α . Here the dependent spin connection ω̃ has been replaced by the independent one. As
the independent part of the spin connection is eliminated by means of the X̄a-e.o.m. (B.7) this
leads to contributions to Na

X. A further source of non-invariance is the modification of the
gravitino transformation in (6.6). This yields another contribution to Na

X from the covariant
derivative acting on ψ̄ , but also to Nω from the term ∝ X̄aψ̄γaψ̄ . The latter contributions are

16 XI = (φ, Xa, χα), AI = (ω, ea, ψα).
17 We denote the equations of motion according to the field which has been varied. Thus the Xa-e.o.m. refers to
(B.7), while the ω-e.o.m. refers to (B.3).
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proportional to P ′(φ̄) and vanish in the case of minimal coupling. Putting all terms together
one finds

δ̄X̄a = δ̄MFS0X̄
a +

i

2
P(ε̄γ mγ aγ∗λ̄)∂mf̄ +

1

4
P(ε̄γ mγ aγ∗ψ̄m)λ̄2 − i

16
P ′(χ̄γ aε̄)λ̄2 (6.12)

δ̄ω̄ = δ̄MFS0 ω̄ − 1

4
P ′(ε̄γ∗ψ̄ − ε̄α ∗ ψ̄α)λ̄2. (6.13)

With these new transformation laws the action (6.8) is finally fully invariant under
supersymmetry, while local Lorentz invariance and diffeomorphism invariance are manifest.

6.2. Matter extension at Z �= 0

To extend the matter couplings to the general MFS (Z �= 0 in (2.9)) we use the conformal
transformations (2.10) and (2.11) of section 2. The matter action is invariant under those
transformations of the fields, when the new matter fields are defined as

f = f̄ λ = e− 1
4 Q(φ)λ̄. (6.14)

After the combined transformations (2.10), (2.11) and (6.14) an action with general MFS as
geometrical part coupled to conformal matter is obtained. S̄(m) in (6.4) by construction is
invariant under the conformal transformation and therefore that equation, after dropping all
bars, is the correct matter extension of MFS. Of course, the new action

Stot(X,A, f, λ) = SMFS(X,A) + S(m)(ea, ψα, φ, f, λ) (6.15)

is invariant under the old ε̄-transformations that act on the barred variables

δ̄Stot(X(X̄), A(Ā, X̄), f (f̄ ), λ(λ̄, X̄)) = 0 (6.16)

but we have to be careful with the new transformations δ (depending on ε), as the transformation
parameters themselves change under a conformal transformation as well. The importance of
this behaviour for the understanding of gPSM-based SUGRA has been pointed out in [8].
Conformal transformations represent a special case of target space diffeomorphisms in the
(g)PSM formulation (cf section 4.1 of [8]). Under such transformations the variables and
symmetry parameters change as

δ̄X̄I = δX̄I (X) (6.17)

δ̄ĀI = δĀI (A,X) + e.o.m.-s (6.18)

ε̄I = ∂XJ

∂X̄I
εJ (6.19)

where the indices are those used in the gPSM formulation (2.1). Equation (6.19) together
with (2.10) and (2.11) for a pure supersymmetry transformation yield (cf section 5.2 in [8],
especially equation (5.8)):

ε̄ = (ε̄φ, ε̄a, ε̄α) = (0, 0, ε̄α)
conformal transformation
———————–−→ ε =

(
Z

4
(χε), 0, εα

)
. (6.20)

Thus for the general MFS the symmetries (6.5) are modified by a local Lorentz transformation
with field-dependent parameter εφ = 1

4Zχε. The symmetry law of f remains unchanged under
both the conformal transformation (6.14) and the additional local Lorentz transformation
(6.20), as this field is invariant under these symmetries. However, for λ the local Lorentz
transformation and the supersymmetry transformation of the conformal factor in (6.14) add
up to the new contributions displayed in equation (6.27) below.
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Still the action (6.15) is not invariant under (6.26), (6.27) and (2.12)–(2.17): first, the
modified laws of ψ̄ (6.6), X̄a (6.12) and ω̄ (6.13) should be rewritten in terms of the MFS
variables. But as none of these extensions generates derivatives onto the conformal factors, this
boils down to rewriting these transformation rules in terms of variables without bars. Second,
the e.o.m.-s appearing on the rhs of (6.18) may necessitate further modifications of the MFS
symmetries. As the conformal transformations (2.10) and (2.11) depend on the dilaton field
only, under supersymmetry transformations discussed so far the action (6.15) is invariant up
to e.o.m.-s of ω. These new non-invariant terms originate from the variation of the gravitino
(cf equation (4.8) of [8] and comments below this equation). Indeed a straightforward
calculation shows that

δ̄ψα = −dε̄α + 1
4Z dφ ε̄α + · · · δψα = −dεα + · · · (6.21)

where the dots indicate terms which do not contain derivatives. The equation of motion
of ω involved here drops out in the geometric part, but obviously not in the matter
extension. However, from the above equation together with the formulation of S(m) in
(6.7), supersymmetry can be restored analogously to the arguments leading to (6.12). It can
be read off from (6.21) that the new (matter-field dependent) piece to the transformation of ω

is obtained by replacing ψα in (6.7) by 1
4Zεα:

δω = (6.13) − 1
4ZP

(
i(εγ aγ bλ)em

a ∂mf (∗eb) + 1
2 (εγ aγ bψm)em

a (∗eb)λ
2
)
. (6.22)

It is useful to summarize what we have obtained in section 6: the gPSM-based MFS
models of equation (2.9) can be extended by the coupling of matter fields. The complete
action (6.15) is given by the sum of (2.9) and (6.4). The supersymmetry transformations
(2.12), (2.14), (2.16) for φ, χα and ea are not changed by the matter coupling. Equation (2.17)
for the gravitino receives new contributions from the elimination of the auxiliary fields in
superspace, while δXa and δω are changed by re-introducing the auxiliary fields of the gPSM
formulation. Thus, the complete list of supersymmetry transformations is given by (2.12)–
(2.17) plus new contributions from the matter fields,

δ(m)X
a = i

2
P(εγ mγ aγ∗λ)∂mf +

1

4
P(εγ mγ aγ∗ψm)λ2 − i

16
P ′(χγ aε)λ2 (6.23)

δ(m)ω = −1

4
P ′(εγ∗ψ − εα ∗ ψα)λ2

− 1

4
ZP

(
i(εγ aγ bλ)em

a ∂mf (∗eb) +
1

2
(εγ aγ bψm)em

a (∗eb)λ
2

)
(6.24)

δ(m)ψα = i
P ′

8
λ2(γ bε)αeb (6.25)

together with the transformations of the matter fields

δf = i(ελ) (6.26)

δλα = (∂mf + i(ψmλ)) (γ mε)α − 1

8
Z((χγ∗ε)λα + (χε)(γ∗λ)α) − P ′

4P
(λγ∗χ)εα. (6.27)

Of course, we could have used the relation to the general Park–Strominger model SFDS
of equation (C.13) to the MFS (cf (C.18) and also [8]) instead of the conformal transformation
of MFS0 to derive the matter coupling at Z �= 0. Thus we may eliminate Xa and ω in
(6.15) and by this procedure arrive at the matter action (6.4) coupled to MFDS. Using
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the techniques developed in [8] this equivalence follows almost trivially. Considering the
symmetry transformations we note that we find again (cf (C.19))

λα = − 1
4Z(χε)(γ∗λ)α (6.28)

in agreement with the result derived in [8].
One might wonder whether, on a different route, it is possible to derive a different matter

extension of gPSM-based SUGRA, where modifications of the transformation laws of XI and
AI do not occur. The answer is negative, as long as this extension shall preserve both local
Lorentz invariance and supersymmetry. Indeed, the commutator of two local supersymmetry
transformations is a local Lorentz transformation δφ plus a ‘local translation’ δa . Invariance
under strict gPSM symmetry transformations would imply that the matter action is invariant
under δa , which, except for rigid supersymmetry, cannot be fulfilled.

7. Supersymmetric ground states with matter

The matter extension of MFS derived in the previous section allows the discussion of
supersymmetric ground states including matter fields. The fully supersymmetric states are
trivial: the geometric variables obey the same constraints as derived already in section 3, the
matter fields must obey f = const and λ = 0.

More involved are the states with one supersymmetry: equation (6.26) leads to

λ+ε+ = −λ−ε− (7.1)

which, in analogy to (4.1), implies λ2ε ≡ 0. Furthermore, as (2.12), (2.14) and (2.16) did not
receive new matter-field-dependent contributions, the relations (4.1), (4.2) and (4.3) still hold.
Of course, this still implies (4.4), but the geometric part of the Casimir function is no longer
conserved (see discussion below).

As a consequence of (7.1) and (4.1)–(4.3) the vanishing of δλα in (6.27) reduces to

δλα = (γ mε)α∂mf = 0. (7.2)

It is straightforward to check that all matter-field-dependent modifications in (6.23)–(6.25)
vanish due to (7.1) and (7.2). Thus the matter couplings do not change the classification of
the solutions as given in section 4 as well as the results of section 5.

In order to understand the condition (7.2) on the matter-field configurations it is
advantageous to reformulate it as

f ++ε+ = 0 f −−ε− = 0 (7.3)

where f ±± = ∗(e±± ∧df ) are (anti-)selfdual field configurations of the scalar field. Thus the
chiral solution of (4.1) and (7.1) with χ− = λ− = ε+ = 0 admits selfdual scalar fields while
the anti-chiral one allows the anti-selfdual f . The third solution with ε+ �= 0 and ε− �= 0 is
compatible with static f , only.

Even in the presence of matter a conserved quantity can be constructed. Its physical
relevance is displayed in the close relationship to energy definitions well-known from general
relativity, such as ADM-, Bondi- and quasi-local mass (for details we refer to section 5 of [16]
and references therein).

The conservation law dC = 0 in the presence of matter fields is modified by analogy to
the pure bosonic case (cf [22]) according to
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e−QdC + X−−W ++ + X++W−− +
1

8

(
u′ +

1

2
uZ

)
(χ−W− − χ+W+) = 0 (7.4)

W±± = δ

δe∓∓S(m) W± = δ

δψ∓S(m). (7.5)

In the presence of matter (−W±±) appear on the rhs of the e.o.m.-s (B.4), (−W±) on the rhs
of (B.5). Equation (7.4) results from a suitable linear combination of the e.o.m.-s (B.3)–(B.5),
C now is only part of a total conserved quantity, which also contains a matter contribution
e−QdC(m) from the W terms.

A straightforward calculation from equation (6.4) yields

W±± = ±e±±
[
P

(
f ++f −− + i ∗ (e++ψλ)f −− + i ∗ (e−−ψλ)f ++

+
1

2
∗ (ψe−−)α ∗ (ψe++)α(λλ)

)
+

u

8
P ′λ2 +

1

32

(
P ′′ − 1

2

P ′2

P

)
χ2λ2

]

+ df

[
P(f ±± + i ∗ (e±±ψλ)) − i

2
√

2
P ′χ±λ±

]

+ P

[
i(ψλ)f ±± − 1

2
ψ ∗ (ψe±±)(λλ) ∓ 1√

2
λ± dλ±

]
(7.6)

W∓ = P

[
−iλ±(e++f −− + e−−f ++ ± df ) − 1

2
ψ∓(λλ)

± 1

2
(e++ ∗ (ψ∓e−−) + e−− ∗ (ψ∓e++))(λλ)

]
. (7.7)

Now also the question may be posed about the meaning of the restriction (4.4) within that
generalized conservation law. The body of dC in (7.4) vanishes trivially due to that equation.
The restriction to (anti-)selfdual or static f as derived from (7.3) ensures that the body of (7.4)
vanishes without imposing further constraints on the fields. Thus the result of section 5 for
the matterless case continues to hold if non-minimally coupled conformal matter is included.

8. Conclusions

In our present work we present the complete classification of all BPS BHs in 2D dilaton
SUGRA coupled to conformal matter. The use of a first-order formulation as suggested from
the graded Poisson–Sigma model approach for the geometric part of the action plays a crucial
role in the calculations. As no matter extension thereof had been considered in the literature,
its derivation is an important result on its own. For future reference we compile the MFS action
non-minimally coupled to conformal matter (with coupling function P(φ)) at this place:

S =
∫
M

[
φ dω + XaDea + χαDψα + ε

(
V + YZ − 1

2
χ2

(
V Z + V ′

2u
+

2V 2

u3

))

+
Z

4
Xa(χγaγ

bebγ∗ψ) +
iV

u
(χγ aeaψ) + iXa(ψγaψ) − 1

2

(
u +

Z

8
χ2

)
(ψγ∗ψ)

+ P

(
1

2
df ∧ ∗ df +

i

2
λγae

a ∧ ∗ dλ + i ∗ (ea ∧ ∗ df )eb ∧ ∗ψγ aγ bλ
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+
1

4
∗ (eb ∧ ∗ψ)γ aγ bea ∧ ∗ψλ2

)
+

u

8
P ′λ2ε

− 1

4
P ′(χγ∗γ aλ)ea ∧ ∗df − 1

32

(
P ′′ − 1

2

[P ′]2

P

)
χ2λ2ε

]
. (8.1)

This action is invariant under the supersymmetry transformations (2.12)–(2.17) supplemented
by (6.23)–(6.27) and (6.26), (6.27).

Starting from this action it has been shown that all BPS-like states have vanishing body
of the Casimir function and thus are ground states. Solutions with vanishing fermions allow
a nontrivial bosonic geometry, but all Killing horizons were found to be extremal. On the
other hand, the geometry of solutions with nonvanishing fermions must be Minkowski space
and consequently there exist no supersymmetric BHs with dilatino or gravitino hair. The
impossibility of supersymmetric dS ground states has been reproduced for our class of models
and the absolute conservation law—the modification of the Casimir function in the presence
of matter fields—has been calculated explicitely.
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Note added in proof. While proof reading, an e-print appeared [25] which allows a nice application of some of the
current paper’s methods. That study is based upon 2D type 0A string theory and among other issues an upper bound
on the number q � 16πe < 12 of electric and magnetic D0 branes is derived (equation (4.7) of [25]). The same
bound immediately follows from reality of the prepotential

u(φ) ∝
√

1 − (q2/(16π))(ln φ/φ)

or, equivalently, from semi-negativity of w(φ) in (B.12). Note that our dilaton φ is related to the dilaton � in [25] by
φ = exp(−2�). In addition, as a simple consequence of the conservation of the Casimir function (B.9) we agree on
the result for the ADM mass (equation (3.9) of [25]).

Appendix A. Notation and conventions

These conventions are identical to [9, 23], where additional explanations can be found.
Indices chosen from the Latin alphabet are commuting (lower case) or generic (upper

case), Greek indices are anti-commuting. Holonomic coordinates are labelled by M,N,O

etc, anholonomic ones by A,B,C etc, whereas I, J,K etc are general indices of the gPSM.
The index φ is used to indicate the dilaton component of the gPSM fields:

Xφ = φ Aφ = ω. (A.1)

The summation convention is always NW → SE, e.g. for a fermion χ : χ2 = χαχα . Our
conventions are arranged in such a way that almost every bosonic expression is transformed
trivially to the graded case when using this summation convention and replacing commuting
indices by general ones. This is possible together with exterior derivatives acting from the
right, only. Thus the graded Leibniz rule is given by

d(AB) = AdB + (−1)B(dA)B. (A.2)
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In terms of anholonomic indices the metric and the symplectic 2 × 2 tensor are defined as

ηab =
(

1 0
0 −1

)
εab = −εab =

(
0 1

−1 0

)
εαβ = εαβ =

(
0 1

−1 0

)
. (A.3)

The metric in terms of holonomic indices is obtained by gmn = eb
ne

a
mηab and for the

determinant the standard expression e = det ea
m = √− det gmn is used. The volume form

reads ε = 1
2εabeb ∧ ea; by definition ∗ε = 1.

The γ -matrices are used in a chiral representation:

γ 0
α

β =
(

0 1
1 0

)
γ 1

α

β =
(

0 1
−1 0

)
γ∗α

β = (γ 1γ 0)α
β =

(
1 0
0 −1

)
. (A.4)

Covariant derivatives of anholonomic indices with respect to the geometric variables
ea = dxmeam and ψα = dxmψαm include the two-dimensional spin-connection one form
ωab = ωεab. When acting on lower indices the explicit expressions read ( 1

2γ∗ is the generator
of Lorentz transformations in spinor space):

(De)a = dea + ωεa
beb (Dψ)α = dψα − 1

2ωγ∗α
βψβ. (A.5)

Light-cone components are very convenient. As we work with spinors in a chiral
representation we can use

χα = (χ+, χ−) χα =
(

χ+

χ−

)
. (A.6)

For Majorana spinors upper and lower chiral components are related by χ+ = χ−, χ− =
−χ+, χ

2 = χαχα = 2χ−χ+. Vectors in light-cone coordinates are given by

v++ = i√
2
(v0 + v1) v−− = −i√

2
(v0 − v1). (A.7)

The additional factor i in (A.7) permits a direct identification of the light-cone components
with the components of the spin-tensor vαβ = i√

2
vcγ

αβ
c . This implies that η++|−− = 1 and

ε−−|++ = −ε++|−− = 1.

Appendix B. E.o.m.-s and conserved quantity

The equations of motion for a generic gPSM are

dXI + P IJ AJ = 0 (B.1)

dAI + 1
2 (∂IP

JK)AKAJ = 0. (B.2)

Consequently, those for the MFS action (2.9) become

dφ − Xbεb
aea + 1

2 (χγ∗ψ) = 0 (B.3)

DXa + εabeb

(
V + YZ − 1

2
χ2

(
V Z + V ′

2u
+

2V 2

u3

))
− Z

4
Xb(χγbγ

aγ∗ψ) − iV

u
(χγ aψ)

= 0 (B.4)

Dχα +
Z

4
Xa(χγaγ

bγ∗)
α
eb +

iV

u
(χγ a)αea + 2iXa(ψγa)

α −
(

u +
Z

8
χ2

)
(ψγ∗)α = 0 (B.5)
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dω + ε

(
V ′ + YZ′ − 1

2
χ2

((
V Z + V ′

2u

)′
+

(
2V 2

u3

)′))
+

Z′

4
Xb(χγbγ

aeaγ∗ψ)

+ i

(
V

u

)′
(χγ aeaψ) − 1

2

(
u′ +

Z′

8
χ2

)
(ψγ∗ψ) = 0 (B.6)

Dea + ηabεX
bZ +

Z

4
(χγaγ

bebγ∗ψ) + i(ψγaψ) = 0 (B.7)

Dψα − εχα

(
V Z + V ′

2u
+

2V 2

u3

)
+

Z

4
Xa(γaγ

bebγ∗ψ)α +
iV

u
(γ aeaψ)α − Z

8
χα(ψγ∗ψ)

= 0. (B.8)

We re-emphasize that V,Z and the prepotential u are related by (2.8).
The full analytic solution of MFS has been given in section 6 of [8]. Each solution is

characterized by a certain value of the Casimir function, a quantity conserved in space and
time. It consists of a bosonic part (body) and a fermionic one (soul):

C = CB + CS (B.9)

CB = eQ(φ)Y + w(φ) = eQ(φ)
(
Y − 1

8u2(φ)
)

(B.10)

CS = 1
16 eQχ2

(
u′ + 1

2uZ
)
. (B.11)

In this equation the (logarithm of the) integrating factor and the conformally invariant
combination of the bosonic potentials

Q(φ) :=
∫ φ

Z(φ′) dφ′ w(φ) :=
∫ φ

eQ(φ′)V (φ′) dφ′ = −1

8
eQ(φ)u2(φ) � 0 (B.12)

have been introduced. In [8] the solutions for C �= 0 (equations (6.9)–(6.13)) and C = 0
(equations (6.17)–(6.21)) have been given which are not reproduced here.

Appendix C. Dilaton SUGRA in superspace

The action for a general dilaton SUGRA in superspace [5] may be written as18

SSFDS =
∫

d2x d2θE

(
�S − 1

4
Z(�)Dα�Dα� +

1

2
u(�)

)
(C.1)

with19 [24]

E = e(1 + iθγ aψ
a

+ 1
2θ2(A + εabψ

b
γ∗ψ

a
) (C.2)

S = A + 2θγ∗σ̃ − iAθγ aψ
a

+ 1
2θ2(εmn∂nω̃m − A(A + εabψ

b
γ∗ψ

a
) − 2iψaγaγ∗σ̃ ) (C.3)

Dα = ∂α + i(γ aθ)α∂a. (C.4)

Quantities with a tilde are defined in analogy to footnote 3. � is the dilaton superfield with
component expansion

� = φ + 1
2θγ∗χ + 1

2θ2F . (C.5)

18 In [5] the first term in the brackets was chosen as EJ(�)S. If a global field redefinition J (�) → � is not possible,
these models are not equivalent globally to MFS [8].
19 Except for the zweibein, components of superfields are denoted by underlined variables to distinguish them from
the fields in the gPSM approach.
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The supersymmetry transformations of the component fields of the superdeterminant are given
by

δem
a = −2i(εγ aψ

m
) δem

a = 2i(εγ mψ
a
) (C.6)

δψ
m

α = −
(
(D̃ε)α +

i

2
A(εγm)α

)
(C.7)

δA = −2
(
(εγ∗σ̃ ) − i

2
Aem

a(εγ
aψ

m
)
)

(C.8)

while those of the dilaton superfield read

δφ = − 1
2εγ∗χ (C.9)

δχ
α

= −2(γ∗ε)αF + i(γ∗γ bε)α(ψ
b
γ∗χ) − 2i(γ∗γ mε)α∂mφ (C.10)

δF = i(εγ aψ
a
)F − i

2
(εγ mγ∗(D̃mχ)) + (ελm)((ψ

m
γ∗χ) − 2∂mφ). (C.11)

Integrating out superspace and eliminating the auxiliary fields A and F using their equations
of motion

F = −u

2
A = −1

2
(u′ + uZ) +

1

8
Z′χ2. (C.12)

one arrives at the action

SSFDS =
∫

d2x e

(
1

2
R̃φ + (χσ̃ ) − 1

2
Z

(
∂mφ∂mφ − i

4
χγ m∂mχ

− (ψ
n
γ mγ nγ∗χ)∂mφ

)
− 1

8
((u2)′ + u2Z) +

u

2
εmn(ψ

n
γ∗ψ

m
)

+
i

2
u′(ζγ∗χ) +

1

8

(
u′′ +

1

4
uZ′ +

1

2
Z(ψ

n
γ mγ nψ

m
)

)
(χχ)

)
(C.13)

while the symmetry transformations of the remaining fields take the form

δem
a = −2i(εγ aψ

m
) δem

a = 2i(εγ mψ
a
) (C.14)

δψ
m

α = −(D̃ε)α +
i

4

(
u′ + uZ − 1

8
Z′(χχ)

)
(εγm)α (C.15)

δφ = −1

2
εγ∗χ (C.16)

δχ
α

= u(γ∗ε)α + i(γ∗γ bε)α(ψ
b
γ∗χ) − 2i(γ∗γ mε)α∂mφ. (C.17)

In [8] it has been shown that this action is equivalent to the action (2.18) of MFDS if the
identifications

ψα

m
= ψα

m +
i

8
Z(φ)ea

mεab(χγ b)α φ = φ χ = χ (C.18)

are made. The supersymmetry transformations are equivalent up to a local Lorentz
transformation with field-dependent parameter:

ε = ε  = δMFDS − δSFDS = Z

2
χεδφ. (C.19)
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[19] Klösch T and Strobl T 1996 Classical and quantum gravity in (1 + 1)-dimensions: I. A unifying approach Class.

Quantum Grav. 13 965–84 (Preprint gr-qc/9508020)



Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality 3901

[20] Grosse H, Kummer W, Presnajder P and Schwarz D J 1992 Novel symmetry of nonEinsteinian gravity in
two-dimensions J. Math. Phys. 33 3892–900 (Preprint hep-th/9205071)

[21] Bergamin L, Grumiller D and Kummer W 2004 Quantisation of 2D dilaton supergravity with matter (Preprints
TUW-04-04, LU-ITP 04-004)

[22] Grumiller D and Kummer W 2000 Absolute conservation law for black holes Phys. Rev. D 61 064006 (Preprint
gr-qc/9902074)

[23] Ertl M 2001 Supergravity in two spacetime dimensions PhD Thesis Technische Universität Wien (Preprint
hep-th/0102140)

[24] Howe P S 1979 Super Weyl transformations in two-dimensions J. Phys. A: Math. Gen. 12 393–402
[25] Davies J, Zayas L and Vaman D 2004 On black hole thermodynamics of 2D type 0A (Preprint hep-th/0402152)


